Evaluating the Differences in Modeling Biophysical Attributes between Deciduous Broadleaved and Evergreen Conifer Forests Using Low-Density Small-Footprint LiDAR Data

نویسندگان

  • Yoshio Awaya
  • Tomoaki Takahashi
چکیده

Airborne light detection and ranging (LiDAR) has been used for forest biomass estimation for the past three decades. The performance of estimation, in particular, has been of great interest. However, the difference in the performance of estimation between stem volume (SV) and total dry biomass (TDB) estimations has been a priority topic. We compared the performances between SV and TDB estimations for evergreen conifer and deciduous broadleaved forests by correlation and regression analyses and by combining height and no-height variables to identify statistically useful variables. Thirty-eight canopy variables, such as average and standard deviation of the canopy height, as well as the mid-canopy height of the stands, were computed using LiDAR point data. For the case of conifer forests, TDB showed greater correlation than SV; however, the opposite was the case for deciduous broadleaved forests. The averageand mid-canopy height showed the greatest correlation with TDB and SV for conifer and deciduous broadleaved forests, respectively. Setting the best variable as the first and no-height variables as the second variable, a stepwise multiple regression analysis was performed. Predictions by selected equations slightly underestimated the field data used for validation, and their correlation was very high, exceeding 0.9 for coniferous forests. The coefficient of determination of the two-variable equations was smaller than that of the one-variable equation for broadleaved forests. It is suggested that canopy structure variables were not effective for broadleaved forests. The SV and TDB maps showed quite different frequency distributions. The ratio of the stem part of the broadleaved forest is smaller than that of the coniferous forest. This suggests that SV was relatively smaller than TDB for the case of broadleaved forests compared with coniferous forests, resulting in a more even spatial distribution of TDB than that of SV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy of Forest Parameters Derived from Medium Footprint Lidar under Operational Constraints

The objective of this study is to test the feasibility of nation-wide medium footprint airborne laser scanning (ALS) data for derivation of forest parameters. The comparison of canopy closure as one important parameter for many forest functions derived from ALS data and aerial photo interpretation was conducted. The present study was carried out in the framework of the Swiss National Forest Inv...

متن کامل

Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape

Meso-scale digital terrain models (DTMs) and canopy-height estimates, or digital canopy models (DCMs), are two lidar products that have immense potential for research in tropical rain forest (TRF) ecology and management. In this study, we used a small-footprint lidar sensor (airborne laser scanner, ALS) to estimate sub-canopy elevation and canopy height in an evergreen tropical rain forest. A f...

متن کامل

Soil microbial community composition does not predominantly determine the variance of heterotrophic soil respiration across four subtropical forests

To explore the importance of soil microbial community composition on explaining the difference in heterotrophic soil respiration (R(h)) across forests, a field investigation was conducted on Rh and soil physiochemical and microbial properties in four subtropical forests in southern China. We observed that Rh differed significantly among forests, being 2.48 ± 0.23, 2.31 ± 0.21, 1.83 ± 0.08 and 1...

متن کامل

Mapping Above- and Below-Ground Biomass Components in Subtropical Forests Using Small-Footprint LiDAR

In order to better assess the spatial variability in subtropical forest biomass, the goal of our study was to use small-footprint, discrete-return Light Detection and Ranging (LiDAR) data to accurately estimate and map aboveand below-ground biomass components of subtropical forests. Foliage, branch, trunk, root, above-ground and total biomass of 53 plots (30 × 30 m) were modeled using a range o...

متن کامل

Prediction of vegetation structure from LIDAR and multispectral satellite data in a topographically complex landscape, Eastern Australia

Measures of forest structure provide an important indication of productivity, health and the growth stage of a forest. Using traditional field-based approaches, extraction of such structural parameters is often time consuming and labour intensive. Remote sensing is a cost effective technique for mapping and interpreting some features of vegetation; and LiDAR provides highly accurate measurement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017